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Konstantinos Voudouris’s dissertation From Animals to Algorithms: Comparative 
Psychology for the Study of Artificial Intelligence constitutes an innovative, 
interdisciplinary approach to the evaluation of artificial intelligence (AI). AI systems are 
beoming increasingly sophisticated, capable of completing complex tasks such as 
playing games, recognising images, and producing human-like language. The problem 
is, we often cannot explain nor predict their behaviour. Comparative psychologists have 
created methodological tools for studying the behaviour of another class of complex 
system, non-human animals. While many have advocated for conducting behavioural 
experiments on AI systems, treating them as though they are participants in the 
laboratory, the value of a comparative psychological approach has been 
underappreciated. This dissertation remedies this by addressing the limitations of 
traditional AI evaluation methods using tools from comparative psychology, laying the 
foundation for a fruitful research programme in an age of increasingly capable AI. While 
the focus of the dissertation is the intersection between comparative psychology and AI 
evaluation, Voudouris also draws on psychometrics, Bayesian statistics, and the 
philosophy of science to advance the way we empirically investigate what 
contemporary AI systems can and cannot do. 

Thesis Summary 

Chapter 1 of the dissertation establishes the foundation for the argument that a 
comparative psychological approach can significantly enhance the study and 
understanding of AI systems. The chapter begins with an overview of the rapid 
advancements in AI, highlighting their impressive capabilities in tasks such as image 
recognition, language processing, and reinforcement learning, while highlighting how 
modern AI systems remain largely opaque, with unpredictable and unexplainable 
behaviour. There have been several calls since the inception of AI as a field to remedy 
this situation by studying this behaviour experimentally, broadly using the empirical 
methodologies of the natural sciences. While the past decade has seen considerable 



work applying tools from human cognitive psychology to study behaviour in computer 
vision models (Ritter et al., 2017), reinforcement learning agents (Leibo et al., 2018), 
and large language models (Binz & Schulz, 2023), little emphasis has been placed on 
applying tools from non-human cognitive psychology (although see Buckner, 2023;  
Crosby, 2020; Hernández-Orallo, 2017b; Shanahan et al., 2020). The central thesis of 
this chapter and the dissertation is that comparative psychology can provide valuable 
tools and methodologies for the study of AI behavior. By leveraging experimental 
designs and concepts from comparative psychology, researchers can gain deeper 
insights into the cognitive capabilities of AI systems. The unique contribution of 
comparative psychology, compared to human psychology, is that its tools and 
methodologies have been developed with the explicit appreciation that the subjects of 
study are not like us, and that many of our assumptions are anthropomorphic, 
anthropocentric, and should be challenged empirically. This approach has several 
potential benefits, including more meaningful evaluations, improved interpretability of 
AI behavior, and the development of more sophisticated and robust AI systems. 

Chapter 2 critiques the standard practice of AI evaluation, which is to produce larger 
and more general datasets and benchmarks which purport to test a number of 
capabilities simultaneously. Voudouris defines a capability following a common 
definition in the philosophy of psychology (where it usually termed a capacity), namely, 
the disposition to complete tasks with certain features (Cummins, 2000, pp. 122–123). 
This account permits a large range in the generality of a capability, depending on the 
features that are considered. For instance, a system can possess the disposition to 
navigate a maze with either a fixed size or any finite size, two distinct but related 
capabilities. These capabilities vary in terms of their generality. Voudouris argues that 
the standard practice of evaluation provides poor tools for testing the capabilities of a 
system. First, these datasets and benchmarks have low validity – they often do not 
measure the capabilities that they are intended to measure (see also Hernández-
Orallo, 2017a; Raji et al., 2021). Second, they lack adequate control conditions, 
meaning that there are multiple competing and equally plausible explanations for 
behaviour that invoke distinct and incompatible capabilities. Third, researchers often 
aggregate performance across benchmarks into a handful of summary statistics. At 
best, these measures are ordinal, meaning that we can make judgments about whether 
a system is better or worse at a task, but not a judgment about how much better they 
are. This would demand interval or ratio measurements, in which magnitudes are 
meaningful, which are not provided by the standard practice of AI evaluation. These 
arguments serve as the basis for the contributions of the remaining chapters of the 
dissertation. 



Chapter 3 introduces one of the major contributions of the dissertation, the Animal-AI 
Environment, which was co-designed by the author. This is a platform designed for 
applying comparative psychological methods to the evaluation of AI systems, 
constituting a virtal laboratory for direct comparison between humans, animals, and 
embodied AI systems. Animal-AI provides a controlled setting where AI agents can be 
tested on cognitive tasks similar to those used in animal behavior studies. Chapter 3 
presents a comprehensive overview of the environment and how it can be used to 
advance interdisciplinary research at the intersection of cognitive science and AI, 
demonstrating its utility in three reinforcement learning experiments. An example of a 
task built in Animal-AI is presented in Figure 1. This task conceptually replicates 
operant chamber tasks common in associative learning and comparative psychology 
(Skinner, 1938). The agent is a unit sphere spawned in a 40x40x40 arena. The agent is 
able to move forwards, backwards, and rotate, and it can be controlled by both a 
computational model (e.g., reinforcement learning) and by human players through a 
controller. The agent receives observations of the environment, including pixel images 
of what is in front of them. The arena can be populated with a number of objects 
explicitly designed for replicating comparative psychology experiments, including 
rewarding objects and buttons, but also dispensers, walls, ramps, and tunnels. The 
author directly contributed to the design of the objects in the environment and the 
interfaces for humans and a number of reinforcement learning libraries, including 
stable-baselines and Dreamer. This means that Animal-AI has broad appeal and is easy 
to use for psychologists and machine learning researchers alike. 

Figure 1 – A button-press task in Animal-AI, replicating operant chamber tasks in comparative 
psychology. Left: Rewarding green spheres placed at different distances from the agent. 
Right: The button that can be pressed to produce a rewarding green sphere. The agent must 
learn to press the button to produce the reward. 



Chapter 4 puts Animal-AI to use for studying a key aspect of physical cognition in 
embodied agents, namely, object permanence, the capability to track objects while 
they are occluded. Object Permanence In Animal-AI: Generalisable Suites (O-
PIAAGETS) is a battery of experiments for studying object permanence in embodied 
agents, conceptually replicating hundreds of experimental designs from comparative 
and developmental psychology. It contains over 12,500 distinct testing instances along 
with over 9,000 control conditions, serving as a significant improvement over other 
benchmarks for assessing object permanence in terms of both size and validity. It can 
be used to study object permanence in humans, reinforcement learning agents, and 
generally any system capable of producing actions in the environment. 

Figure 2 shows a conceptual replication of a task from the Primate Cognition Test 
Battery (Herrmann et al., 2007). In the original task, a rewarding item is hidden in one of 
three cups. The participant receives the item, usually a piece of food or a toy, if they 
correctly identify which cup it is hidden under. If they choose the incorrect cup, they 
receive no reward. In Animal-AI, this is conceptually replicated with a rewarding green 
sphere dropping behind an opaque wall behind a ramp. If the agent navigates over the 
incorrect ramp, they cannot exit and they cannot obtain the rewarding item. The right 
panel of Figure 2 is an example of a control condition, where the reward is not occluded 

Figure 2 - A three-cup task from O-PIAAGETS, conceptually replicating the cup tasks in the 
Primate Cognition Test Battery (Herrmann et al., 2007). The agent is indicated by the grey 
arrows. The movement of green spheres is indicated by the blue arrows. Left: An object 
permanence version of this task. The rewarding green sphere drops from a height behind the 
opaque blue wall. Right: A control version of this task, where the sphere is not occluded. In 
both cases, navigating over the incorrect ramp means that the agent cannot escape and 
loses all its points. 



while the agent is making the choice (it can be seen from the top of the ramp). Good 
performance on the control conditions and poor performance on the object 
permanence conditions suggests that the agent lacks object permanence. 

Figure 3 presents results on a similar task from O-PIAAGETS, reported in Chapter 6. This 
task, called the Grid Task, involves a single rewarding green sphere dropping from a 
height into one of a number of holes in the ground. In the control condition, the goal is 
(partially) visible once it has dropped, whereas in the object permanence condition, it is 
occluded. Thirteen types of agenta were evaluated on over 400 variants of this task. 
Baselines were established by a random agent, which takes randomised actions in the 
environment, a heuristic agent, which navigates towards visible rewards, and children 
aged 4-7 years old. Two deep reinforcement learning algorithms were also evaluated, 
Proximal Policy Optimisation (PPO; Schulman et al., 2017) and Dreamer-v3 (Hafner et 
al., 2023), trained on five different curricula. It is clear from the performance of the 
Dreamer agents that they are capable of completing many control tasks, but as soon as 
objects are occluded, their performance is significantly worse, suggesting that they lack 
the object permanence capability. This contrasts with children, who perform similarly 
on both conditions. 

While O-PIAAGETS constitutes an advancement in object permanence testing in the 
context of the standard practice of AI evaluation, it still invites researchers to aggregate 
performance across the whole benchmark, leading to ordinal, rather than interval or 
ratio, measurements. Chapters 5 and 6 improve this situation by introducing the 
measurement layout approach, a statistical paradigm inspired by (Multivariate) Item 
Response Theory and psychometrics (Reckase, 2009). Measurement layouts are 

Figure 3 – Left: The grid task, which goals indicated by the red arrows and the agent’s position 
indicated by the grey arrows. The right panel shows a control condition, where the goal is visible 
from the agent’s starting position. The left panel shows an object permanence test condition, 
where the goal drops from a height and is occluded. Right: Results on these tasks for 13 agents, 
including Children and two deep reinforcement learning agents (PPO and Dreamer) trained on 
five different curricula each. 



hierarchical Bayesian networks that relate the properties of single testing instances 
with agent performance via intermediary latent capabilities (Burden et al., 2023). 

Chapter 5 introduces these models through a simple example. An agent in Animal-AI is 
tasked with obtained rewarding green spheres of varying sizes and at varying distances 
from its starting position (see Figure 4). The agent’s disposition to solve these tasks can 
be characterised by its visual acuity: how well it can see small and more distant 
objects. By taking an agent’s performance across a battery of tasks with different goal 
sizes and goal distances, measurement layouts can be used to infer a latent visual 
acuity capability. Since measurement layouts are Bayesian, capabilities are estimated 
as probability distributions over measures defined in terms of observable features of 
the task, in this case, the combination of goal size and goal distance. This allows us to 
compute the probability that an agent will pass a particular task given a goal’s size and 
its distance from the agent. Measurement layouts can be scaled up to disentangle 
multiple latent capabilities that are sensitive to different features of a task and all 
differentially contribute to success. Furthermore, they enable us to integrate 
theoretical knowledge from the cognitive sciences into the measurement procedure. 
Finally, the resulting capability estimates, operationalised as posterior probability 
distributions, are given in interpretable units as defined by the task demands. This 
means that the magnitudes of the capability estimates are meaningful and can be used 
in comparisons between systems and species, thus serving as interval and/or ratio 
measurements. 

Figure 4 – Left: A measurement layout relating two task features to task performance, via a 
latent visual acuity capability. Right: Three tasks in Animal-AI varying the size and distance of 
the rewarding green sphere (the goal). 



Chapter 6 presents an extensive analysis of the capabilities of agents on a subset of O-
PIAAGETS, drawing both on classical methodologies in experimental psychology as well 
as the new measurement layout approach. Forty computational agents, including PPO 
and Dreamer-v3, were evaluated on over 4,200 O-PIAAGETS tasks and compared to 
children aged 4-7 years old. Measurement layouts were used to disentangle thirteen 
latent capabilities, including object permanence and navigation, producing probability 
densities over measures with interpretable units. 

Figure 5 presents summaries of the probability densities of the latent object 
permanence capabilities extracted from 42 fitted measurement layouts. The 
measurement is in units of the manhattan distance the agent must travel to obtain the 
goal multiplied by the number of places the goal could be hidden in. Goal distance is 
used as a proxy for the amount of time the goal is occluded for. Clearly, all 
computational agents have noticeably lower object permanence capabilities than 
children. In contrast, Figure 6 presents the same summaries for the latent navigation 
capability. A number of agents, including the rule-following heuristic agents and two 
Dreamer agents have high navigation capabilities, measured in terms of the distance 
and tortuosity of the route to the goal from the agent’s starting point. These capability 
profiles cannot be inferred from aggregating performance across different testing 
conditions, demonstrating a key contribution of measurement layouts. A nuanced 

Figure 5 - Forest plots showing the mean and highest-density intervals (HDIs) of the object 
permanence capability distributions for 41 agents, disentangled from 6 other latent 
capabilities. RW and RA refer to different types of random agents (random walker vs. random 
action). 



capability profile can be inferred from testing an agent on a well-annotated and 
designed benchmark of tasks, and redundancy is minimised because every task can be 
used to measure multiple capabilities at once. 

Part II of the dissertation turns to methodological and philosophical questions in the 
study of non-human behaviour, in an effort to more completely characterise the 
challenges of behaviourally evaluating the capabilities of AI systems. In its over 100 
year history, scientific comparative psychology has grappled with a number of issues in 
turning the tools of human psychology over to the study of non-human animals. To what 
extent are scientists biased by their own intuitions and preconceptions about behaviour 
when interpreting what animals can and cannot do? To what extent are measures used 
on humans valid when used with animals? What sorts of hypotheses should be on the 
table when trying to explain how animals behave? Chapters 7, 8, and 9, present 
extensive case studies of methodological challenges in comparative psychology, 
before drawing lessons for a comparative psychological approach to AI evaluation.  

Chapter 7 for how hypotheses are generated in comparative psychology, and in 
particular, the role of analogical reasoning in comparative psychology. Analogies drawn 
from human psychology and associative learning are conduits for transferring 
knowledge from well-studied phenomena to less understood ones. In particular, 

Figure 6 - Forest plots showing the mean and highest-density intervals (HDIs) of the object 
permanence capability distributions for 41 agents, disentangled from 6 other latent 
capabilities. RW and RA refer to different types of random agents (random walker vs. random 
action). 



Voudouris argues that analogies justify that hypotheses are worthy of pursuit because 
of their established explanatory potential. The use of analogies also sheds light on the 
longstanding debate about the existence of a distinction between associative learning 
and cognition. A novel account of the ontogeny of this distinction is offered, namely, 
that the apparent distinction in the scientific literature does not necessarily track a 
difference in behavioural processes, but is rather an artefact of the analogical 
reasoning processes which gave rise to hypotheses in the literature. By framing the 
associative-cognitive distinction as a product of analogical reasoning, this chapter 
provides a more charitable interpretation of comparative psychology than is usually 
offered by philosophers of science. It suggests that the field's reliance on analogies 
from human psychology and associative learning does not necessarily imply an 
endorsement of a problematic dichotomy between behavioral processes.  
Furthermore, analogical reasoning is presented as a justifiable strategy for hypothesis 
generation in comparative psychology, as well as in AI evaluation. 

Chapter 8 turns to the practice of preferring simpler hypotheses in comparative 
psychology, often referred to as Morgan’s Canon (1894; 1903): In no case is an animal 
activity to be interpreted in terms of higher psychological processes if it can be fairly 
interpreted in terms of processes which stand lower in the scale of psychological 
evolution and development. Due to the ubiquity of this line of thinking, hypotheses that 
appeal to simpler processes, such as associative learning, tend to be taken as simple 
default explanations of an animal’s behaviour. However, philosophers of science have 
long pointed out the lack of evidence for any measure of the simplicity of behavioural 
processes that would justify such inferences (Fitzpatrick, 2008, 2017; Meketa, 2014). 
This chapter accepts these arguments, but claims that the simplicity of behavioural 
processes is a useful idealisation for generating alternative hypotheses. While there 
may be no evidence that associative learning is simpler than, say, episodic memory or 
tool use, thinking in these terms assists comparative psychologists in generating 
plausible alternative hypotheses to test empirically, thus idealising away from the 
complexities of animal behaviour (see Potochnik, 2017; Weisberg, 2007). This is 
particularly useful in cases where evidence is limited and there is a vast potential 
hypothesis space, as in the case of non-human animal research and, incidentally, AI 
evaluation. As pointed out in the philosophy of science literature scientists often need 
heuristics and cognitive aids for generating hypotheses in such situations, and 
idealisations about the simplicity of behavioural processes are one example. 

Chapter 9 collates the methodological challenges discussed in the preceding two 
chapters and puts them to 220 practicing comparative psychologists in a survey. The 
questions probed their preferences for simpler hypotheses and their views on the 
apparent distinction between associative learning and cognition. The results are 
synthesised with the analyses across the dissertation, presenting key methodological 
considerations for studying the behaviour of AI systems. First, AI Evaluation must pay 
close attention to the problem of contrastive underdetermination, which refers to the 
situation where several incompatible explanations are consonant with the available 
evidence. Comparative psychologists have innovated several methods for generating 
novel alternative hypotheses to explain non-human animal behaviour that challenge 
anthropocentric and anthropomorphic assumptions. Second, AI Evaluation must blend 



theory and experiment to produce valid measures of the capabilities being targeted, 
and engage in critical debate about those measures in open fora, as has been practiced 
by comparative psychologists for several decades. With an eye on the methods of AI 
Evaluation, we can advance our understanding of AI capabilities without succumbing to 
the pitfalls concomitant with studying behavioural systems very different from humans. 

Interdisciplinary Contribution 

From Animals to Algorithms presents an interdisciplinary approach to evaluating 
artificial intelligence by drawing on the methodologies of comparative psychology. The 
increasing behavioural sophistication of AI systems, and the concurrent difficulty of 
explaining their behaviour, may well become one of the fundamental challenges of 
cognitive science in the future. Recognising this, Voudouris argues that the tools 
developed to study animal cognition offer valuable insights. This dissertation makes 
several contributions. First, it presents a comprehensive critique of the prevailing 
reliance on large datasets and benchmarks in AI evaluation, highlighting their 
limitations in validity and measurement rigor. Second, it presents the most 
comprehensive and up-to-date overview of the Animal-AI Environment, a platform 
unique in its mission to unify comparative psychology and AI research which facilitates 
direct comparisons between humans, animals, and AI agents on shared cognitive 
tasks. Animal-AI, coupled with the development of specific test suites like O-PIAAGETS 
for assessing object permanence, enables the application of comparative 
psychological methods in a controlled digital setting. Third, this dissertation presents a 
novel statistical paradigm inspired by psychometrics and Bayesian statistics, to move 
beyond simple rankings of AI performance and achieve more nuanced, quantifiable 
measurements of capabilities. Finally, this dissertation makes contributions to the 
philosophy of science in its discussion of hypothesis generation strategies in 
comparative psychology. This synthesis of comparative psychology, computer science, 
statistics, and philosophy offers a novel and much-needed framework for evaluating AI 
in a way that integrates into the cognitive sciences. 

The research outputs of this dissertation have been, and continue to be, published at 
venues across comparative psychology, machine learning, artificial intelligence, and 
philosophy of science. A selected subset of these works is given immediately below: 

• Voudouris, K., Donnelly, N., Rutar, D., Burnell, R., Burden, J., Hernández-Orallo, 
J., & Cheke, L. G. (2022) Evaluating Object Permanence in Embodied Agents 
using the Animal-AI Environment. EBeM’22: Workshop on AI Evaluation Beyond 
Metrics, IJCAI, July 25, 2022, Vienna, Austria. 

• Voudouris, K., Farrar, B. G., Cheke, L. G., & Halina, M. (forthcoming). Morgan’s 
Canon and the Associative-Cognitive Distinction Today: A Survey of 
Practitioners. Journal of Comparative Psychology. 

• Voudouris, K., Liu, J. D., Siwinska, N., Schellaert, W., & Cheke, L. G. (2024). 
Investigating Object Permanence in Deep Reinforcement Learning Agents. 
In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 46). 

• Burden, J., Voudouris, K., Burnell, R., Rutar, D., Cheke, L., & Hernández-Orallo, J. 
(under review). Inferring Capabilities from Task Performance with Bayesian 



Triangulation. Journal of Artificial Intelligence Research. (arXiv preprint 
arXiv:2309.11975). 

• Voudouris, K. et al. (under review) The Animal-AI Environment: A Virtual 
Laboratory For Comparative Cognition and Artificial Intelligence Research. 
Behavior Research Methods. (arXiv preprint arXiv:2312.11414). 

• Voudouris, K. (under review). Analogies and the Associative-Cognitive 
Distinction in Comparative Psychology. Biology & Philosophy. 

• Voudouris, K. (under review). Cognitive Simplicity as an Idealisation. Erkenntnis. 

Future Directions 

The dissertation opens up several future research opportunities. The Animal-AI 
Environment continues to be developed as a research tool for cognitive scientists and 
AI researchers to work together on mutual research problems. Measurement layouts 
constitute a new paradigm for measuring cognitive capabilities in machines and 
humans, facilitating direct comparison between them and a more nuanced appraisal of 
our progress towards intelligent machines. They are now being extended and applied to 
other classes of system, including large language models. Novel philosophical 
analyses of the science of comparative psychology advance the debates on the 
associative-cognitive distinction, Morgan’s Canon & principles of parsimony, and 
hypothesis generation strategies. Combined, this dissertation represents a significant 
step forward in the interdisciplinary study of Artificial Intelligence, laying the foundation 
for a robust, comparative psychological approach to AI Evaluation. 
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